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ABSTRACT. We present an algorithm which computes the resolution of a plane 
curve singularity at the origin defined by a power series with coefficients in a (not 
necessarily algebraically closed) field k of characteristic zero. We estimate the 
number of k-operations necessary to compute the resolution and the conductor 
ideal of the singularity. We show that the number of k-operations is polyno- 
mially bounded by the complexity of the singularity, as measured for example 
by the index of its conductor ideal. Our algorithm involves calculations over 
reduced rings with zero divisors, and employs methods of deformation theory 
to reduce the consideration of power series to the consideration of polynomials. 

The problem of resolving singularities is of fundamental interest in modern 
algebraic geometry. In this paper we make a small step toward approaching this 
problem from the point of view of computational complexity. We present an 
algorithm, suitable for machine implementation, which computes the resolution 
of a plane curve singularity-that is, a singularity at the origin defined by a 
formal power series F in two variables x and y over a field k. As we describe 
it, the algorithm requires that k be of characteristic zero (or at least of "large" 
characteristic) but this hypothesis can certainly be removed at the expense of 
some complications. The algorithm obtains explicit equations for the blowing- 
up of the singularity, and therefore yields all of the interesting invariants of 
the singularity, such as its conductor and its Milnor number. We also provide 
upper bounds for the number of k-operations needed for the operation of the 
algorithm. 

The problems we consider in this paper have a long history. In [18], Kung 
and Traub consider the complexity of Newton's method for solving analytic 
equations. There, they present estimates for the number of times Newton's 
method must be applied to obtain an approximate solution to an analytic equa- 
tion before an iterative method can be employed to refine the solution. This 
process is closely related to the resolution problem. Berry, in [3], considers the 
complexity of Coates' algorithm [8] for computing Puiseux expansions. Chud- 
novsky and Chudnovsky [7] have looked at computing Puiseux expansions from 
the point of view of differential equations. The work of Duval and Dicrescenzo 
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(see [11, 9, 10]), carried out independently from ours, gives another approach 
to the resolution problem. 

Our algorithm for the resolution problem was influenced by two primary 
considerations. First, we require that our algorithm rely strictly on local data 
regarding the singularity to be resolved, and we estimate the complexity of the 
algorithm in terms of this purely local data; and second, we use only arithmetic 
operations on polynomials over a field, and in particular do not invoke any 
algorithms for factoring polynomials. 

The first restriction was adopted partly for philosophical and partly for prac- 
tical reasons. From a philosophical point of view, curve singularities (and oth- 
ers) are local phenomena, and therefore one should compute with them using 
only local data. More practically, it is worth observing that plane algebraic 
curves-the usual source of curve singularities-typically are far less singular 
than they can be. In other words, a plane curve of degree, say, d, over a field 
k, will generically have only a few, rather simple, singularities. It seems reason- 
able, therefore, that the complexity of an algorithm to resolve those singularities 
should depend on the complexity of the singularities rather than on the degree 
of the curve on which they lie. 

The decision to work purely locally influences our algorithm in two main 
ways. First, we assume that our singularity is defined by a power series with 
coefficients in a field k (assumed for simplicity to be of characteristic zero). We 
are allowed to ask for any desired coefficient of our power series, but we cannot 
"know" the entire series at once. Therefore, we must reduce the consideration 
of an infinite series to the consideration of a polynomial. By applying simple 
techniques from deformation theory, we show that we can effectively discard all 
but finitely many terms of the power series. Secondly, we measure complexity 
in terms of local invariants such as the Milnor number (see ? 1). We show that 
the time expended in determining how many coefficients of the power series are 
necessary to describe the singularity, and the number of terms of the series that 
we must consider, are polynomial functions of the Milnor number. 

To illustrate the consequences of this local approach, suppose that we are 
attempting to resolve an ordinary double point, at the origin, on a curve of 
huge degree defined by a polynomial F(x, y). Our method computes quickly 
that we only need the leading form of F, discards the rest, and therefore the 
total time needed to blow up this simple singularity is unaffected by the fact 
that F may have thousands of terms. 

To accomplish the reduction of our problem from consideration of power 
series to polynomials, we apply the theory of Grobner bases. We find a standard 
basis for the ideal generated by the partial derivatives Fx and F of the power 
series F (x, y) which defines the singularity. Knowledge of this ideal tells us the 
Milnor number of F, as well as enabling us, by an application of Tougeron's 
lemma, to find an integer N such that the polynomial obtained from F by 
dropping terms of total degree greater than N is analytically equivalent to F. 
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Our method is related to Mora's method [20] for computing tangent cones, but 
is complicated by the fact that we work over a power series ring, and also by 
the fact that we admit coefficient rings with zero divisors (for reasons discussed 
below). 

The second guiding consideration in constructing our algorithm was the desire 
to avoid the use of polynomial factoring algorithms. The issue of factoring 
polynomials arises because computers do not naturally compute in algebraically 
closed fields, so we must begin with singularities defined over finitely generated 
fields. However, the process of resolution generally introduces field extensions, 
since the infinitely near points to a singularity need not be defined over the initial 
field. Some method for handling successive field extensions therefore must be 
built into the resolution algorithm. We show that, by working with successive 
extensions of Artinian rings, rather than with successive field extensions, one 
need never factor a polynomial; rather, whenever the issue of whether a given 
polynomial factor arises, the necessary factor is already at hand as a by-product 
of the algorithm. This usually occurs when an element of our coefficient ring 
needs to be inverted; at such times, we may need to split the coefficient ring 
into two parts, in one of which our element is zero, and in the other of which 
it is a unit. 

The technique of "passive factorization" which we exploit has been developed 
independently, in somewhat different settings, by other authors. For example, 
it is similar to the idea in Lenstra's algorithm for factoring integers using ellip- 
tic curves, where one simply treats an integer as prime until one is forced to 
accept the conclusion that it is not. In addition, Duval and Dicrescenzo (see [9, 
10]) have independently developed and implemented ideas similar to ours, and 
have applied them to the problems of computing Puiseux expansions and to 
testing absolute irreducibility. Related ideas, under the heading of "flattening 
stratifications", have apparently also been developed by Schreyer [21]. 

As with our goal of making the algorithm local, there are both philosophical 
and practical reasons for adopting this approach. From the practical point of 
view, by avoiding factoring algorithms we simplify our algorithm, and gain 
greater generality since we can work over fields where we do not have good 
factoring algorithms. However, in certain special cases we may pay a price in 
efficiency. 

The philosophical motivation for avoiding factorization comes from the sense 
that resolution of singularities is properly viewed as a problem in linear algebra. 
Based on our experience developing this algorithm, we have a hunch, unsup- 
ported by evidence, that the lower bound for resolving a plane curve singularity 
with Milnor number /u is close to the lower bound for solving /u linear equa- 
tions in yu unknowns-that is, on the order of u3 or more likely j4. In 
impressionistic terms, we feel that the two phenomena which contribute to the 
complexity of resolution-successive field extensions, which increase the num- 
ber of infinitely near points, and repeated blowings-up, which measure how 
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singular each such point is-should be treated in a balanced way. Using fac- 
torization algorithms puts too much emphasis on the field extension problem. 
For example, resolving even an ordinary multiple point of multiplicity m could 
require factoring a polynomial of degree m, and therefore could be quite ex- 
pensive, even though the singularity is trivial. In addition, use of factorization 
algorithms will probably not affect the worst case complexity of the blowing-up 
algorithm, since there are "bad" singularities which are analytically irreducible. 

In this paper, we are able to obtain a complexity estimate on the order of 
y6 (see Theorem 49 below) for our version of the blowing-up algorithm. Since 
we are not convinced by any means that this is a proper lower bound on the 
complexity of the resolution problem, a more careful study of our algorithm 
may make it possible to improve our 16 estimate. Therefore, we have tried 
to describe our algorithm in a very detailed manner, in the hope that some 
future researcher will be able to whittle away at this y6 estimate and obtain an 
estimate closer to j4. In any case, the question of a reasonable lower bound 
on the complexity of resolution is quite open, and deserves attention. 

We remark that, since our decision to avoid factoring will force us to work 
over rings with zero divisors after first blowing up, we assume that our initial 
singularity is defined over a ring with zero divisors. This way we need not con- 
sider the first blowing up as a special case, and so we may design our algorithm 
to be recursive. 

Finally, it is appropriate to give a few comments regarding implementation 
of this algorithm. As described, it should be relatively straightforward to im- 
plement this algorithm in a symbolic computation language such as MAPLE 
or MACSYMA. To get good performance on other than simple singularities, 
it would be worth writing a special purpose program. We have, in the course 
of designing the algorithm, written a host of small test programs, on various 
different computers, in various languages, at different universities. As a result, 
while we have considerable experience with implementing small pieces of this 
algorithm, and have expended considerable effort to make the version of it de- 
scribed in this paper an efficient implementation, we have never had a complete 
working model. Development of such a model would be a worthwhile project. 

We would like to express our appreciation to David Mumford, who originally 
suggested this problem to us. 

The paper is divided into three sections. The first section briefly discusses 
the various measures of the complexity of a singularity which we will consider, 
as well as the small amount of deformation theory that we require. The second 
section presents the algorithm which computes an algebraic deformation of a 
singularity defined by a power series-that is, it finds a polynomial defining a 
singularity analytically isomorphic to the original singularity defined by a power 
series. Much of the time is spent developing a data structure, which we call a 
"tree of standard bases", which is an efficient way to organize these calculations. 
The third section describes the resolution algorithm itself. 
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1. PRELIMINARIES 

We begin with a brief discussion of plane curve singularities and their invari- 
ants. Let k be a field. A plane curve singularity over k is defined by a power 
series F(x, y) in the ring A = k[[x, y]] such that the quotient ring A/FA is 
reduced. Since A is a UFD, this means that F must be square free-in other 
words, if F = u fH 7Tn is a factorization of F, where u is a unit and the 7i 
are distinct prime elements, then all of the ni must be one. Throughout this 
paper, we will be working with power series which we assume to be square free. 
In fact, the question of determining whether or not a power series is square free 
is uncomputable. 

Lemma 1. There is no algorithm for deciding whether or not a power series F = 

E aijxiy' with coefficients in a field k of characteristic zero is square free. 
Proof. Suppose we had such an algorithm. Let f: N -+ Z c k be any com- 
putable function. Let F = y2 + E f (i)x . Then it is easy to see that F is not 
square free if and only if f is identically zero. By applying our square free al- 
gorithm to F, we could determine whether or not f was identically zero. But 
this is not possible-for example, such an algorithm would lead to a solution 
to Hilbert's tenth problem. o 

It is an interesting question to ask what additional hypotheses one can place 
on formal power series F so that whether or not F is square free becomes 
computable. For example, if F is in fact a polynomial, then it is well known 
that one can determine if F is square free by computing its discriminant. Is 
there a class of power series F , with coefficients given by a computable function, 
which is larger than the polynomials and for which the predicate "F is square 
free" is computable? 

Let p be a square free polynomial with coefficients in a field k, and let 
D(p) = k[T]/p. Let F be a power series in x and y, with coefficients in 
D. Geometrically, such a power series represents finitely many plane curve 
singularities. We will be interested in the following invariants of the ring 
D(p)[[x, y]]/F. For a more detailed discussion of these, see Brieskorn and 
Knorrer [4, Chapter 8], Serre [22], or Gorenstein's paper [14]. 

Definition 1. Let A = D(p)[[x, y]] and let F E A be a square free power 
series. Let B = A/FA. Then we define the following invariants: 

1. The multiplicity mF of F is the largest integer such that F E (x , y)mF. 

2. The Milnor number of F, 1UF, is the number: 

PF = dimk A/(OF/Ox, OF/0y). 
3. The conductor CF is the number 

CF = 2 dimkB*/B 

where B* denotes the total integral closure of B. 
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4. The degree 6F of F is the smallest integer 5F such that (x, y)3F C 

(OF/Ox, OF/Dy). 

Since F is square free, all of these invariants are finite. We remark that our 
CF is twice what some people call the "conductor"of F; but since we will be 
using it to measure asymptotic complexity, this factor of two is irrelevant. 

Lemma 2. Let p(T) = p1 (T)p2(T) be a factorization of p over k . Let Di = 
k[T]/pi, and let F1 be the image of F E D[[x, y]] in the quotient ring Ai = 
Di[[x, y]]. Then the various invariants of F are related to those of the F. in 
the following manner: 

1. mF = min{mF , mF} 
2. uF = F + kF 

3. CF CF + CF 
1 2 

4. 6F= max{fF ,6F}. 

Proof. All of these properties follow easily from the Chinese remainder theo- 
rem. fl 

We will need the following relationships between these invariants. 

Lemma 3. The following relationships hold between the fundamental invariants: 
2 

MF -1 < 6F < PuF < CF < 2PF <C deg(p)6F 
Proof. By Lemma 2, we may assume that our coefficient ring is a field. Since 
mF is the degree of the leading form of F, we know that (OF/Ox, OF/0y) is 
contained in (x, 

5)mF 
1 Therefore, )F?> mF - 1 . We know from the general 

theory (again, see [4]) that '1F and CF are related by the formula 

F= CF - r + 1, 

where r is the number of connected components of the resolution of F (over 
k). Since r > 1, we must have u < CF . However, we also know that r < m. 
It follows from the classical formula for the conductor [4, p. 764] in terms of 
the multiplicities of infinitely near points that 

CF > mF(mF - 1) > r(r - 1) > 2(r - 1), 

since r > 1 . It follows that 21IF > CF. Now we show that 6F < PF . For each 
element f of I = (OF/Ox, OF/Oy), let f* be its leading form-that is, the 
homogeneous part of f of least degree. For each degree i, let 

Mi = {f: deg(f*) = i}, Mi = {f: f e MA} 

It is easy to see that if i is such that M* spans all monomials of degree i, 
then ( < i. Therefore, we can choose a monomial mi of degree i, but not 
belonging to Mi, for each i < 6F . If h = E aimi, then the leading form of h 
is (a multiple of) one of the mi, and therefore h is not in I. It follows that 
the mi are linearly independent modI, and so JUF > ?F. 
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The last inequality follows from the fact that A(p)/IF is a subspace of 

A(p)l(x, y)6F . [] 

Finally, we present the lemma from deformation theory which we will exploit. 
This lemma, a special case of Tougeron's lemma, shows that, if F is a power 
series, then the singularity defined by F depends, up to analytic isomorphism, 
on only finitely many coefficients of F, and that the number of coefficients 
required to "know" F is polynomially bounded by 1F . 

Lemma 4 (see Artin [1, p. 100]). Let k be a field of characteristic zero, let p be 
a square free polynomial over k, and let F be an element of the ideal (x, y) in 
A = k[T]/p[[x, y]]. Let I = (OF/Ox, OF/0y). Suppose G is another power 
series in A such that G _ F (mod (x, y)I2) . Then there are power series 

u(x,y)=x+ , v(x,y)=y+ , 

such that u -x (mod I(x, y)) and v -y (mod I(x, y)), and G(x, y) = 

F(u(x, y), v(x, y)). 

Proof. Again, we may assume that p is irreducible- which amounts to saying 
that F has coefficients in k. Let Fx = OF/Ox and Fy = OF/0y. We will try 
to find a, b, and c in (x, y) so that 

G(x, y) = F(x +aFx + bFy, y +cFY). 

Expanding in a Taylor series, we have 

G(x,y)-F(x,y)=aFx+bFxFy +cFy+R(a,b,c,x,y). 

It is not hard to see that R(a, b, c, x, y) can be written as 

R(a, b c, x, y) = HI (a, b, c)Fx + H2(a, b, c)FxFy + H3(a, b, c)Fy, 

where the Hi are power series in A[[a, b, c]], all terms of which are of degree 
at least two in a, b, and c. Since G _ F (mod I(x, y)), we may write 

G-F = rF2 + sFxFy + tFy, 

where r, s, and t belong to (x, y). Therefore, we will be done if we can 
solve the system of analytic equations: 

a +H1(a, b, c) = r, 

b + H2(a, b, c) =s, 
c+H3(a, b, c) = t. 

Clearly, setting a = r, b = s, and c = t gives an approximate solution to this 
equation; since the Jacobian matrix of the system is invertible and r, s, and t 
belong to (x, y), Hensel's lemma gives us an exact solution. This proves the 
lemma. n 

We apply this lemma in the following setting: 
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Lemma 5. Let F be a square free power series in A = (k[T]/p)[[x, y]], and let 
G be the polynomial constructed from F by dropping all terms in F of degree 
larger than 2F ' Let IF = (OF/0x, OF/0y) and let IG be the similar ideal 
for G. Then IG = IF and there is an automorphism 6: A -f A carrying F to 
G and inducing the identity map on A/IF = AuIG. 
Proof. Once again, we may reduce to the field case. It follows immediately 
from Lemma 4 that there is an automorphism 6: A -f A which induces the 
identity on A/IF and carries F to G. Therefore, we only need to show that 

IF = IG . We leave it to the reader to show that this equality follows easily from 
the assumption that F -G (mod I; (x, y)). n 

It is worth pointing out that we never actually need to compute the analytic 
isomorphism referred to in this lemma. It is sufficient for our purposes to know 
that it exists, and that it is congruent to the identity modIF . Notice also that 
the number of monomials in a polynomial of degree 2( is O(62) . This, in turn, 
is bounded by O(,42 ). Therefore, the amount of data necessary to describe a 
plane curve singularity is polynomially bounded in the Milnor number of the 
singularity. 

2. COMPUTING AN ALGEBRAIC DEFORMATION 

Let p(T) be a square free polynomial with coefficients in a field k, and let 

D(p) = k[T]/p(T). 

Suppose that A(p) = D(p)[[x, y]] is the ring of formal power series with D(p) 
coefficients. Let f E A(p) and let IF = (OF/0x, OF/0y). Our aim in this 
section is to describe a method for determining the invariants 5F and JPF* 
This is equivalent to finding an algebraic deformation of F, since we know by 
Lemma 5 that knowledge of 6F enables us to construct a polynomial G which 
is analytically equivalent to F. Our method for computing 5F and PF is to 
compute a special type of generating set for the ideal IF = (OF/Ox, OF/0y), 
from which we can read off the desired invariants. 

2.1. Standard bases. In order to describe a standard basis, let us order the 
monomials in x and y lexicographically within degree, so that 

1 > x > y > x > xy > y > . . . . 

If f E A(p) is a power series, then we define the leading term l(f, p) to be the 
largest monomial in f with a nonzero coefficient, and we let c(f, p) denote 
its coefficient. Then the following definition describes a standard basis when p 
is prime. 

Definition 2 (see [5, 2]). Suppose that p(T) is a prime polynomial over k, and 
that I c A(p) is an ideal. Then a set B of elements B = {f1, ... ., fn} of A(p) 
such that l(f1, p) > l(f22, p) > . and such that the f generate I is called a 
standard basis for I provided that 
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generates the ideal 

I = {l(f, P)If E I} 
of leading forms of elements of I. 

Standard bases for I are useful because they provide a method of construct- 
ing canonical representatives for elements of A/I, as we see in the following 
theorem. 

Theorem 6 (Hironaka [1 5]). Suppose that p is prime. Suppose for I c A that 
B = {f1, ... , fn} is a standard basis. Then every element g E A has a unique 
representation 

n 

(1) g = Eaifi + an+1 ai E A 
1=1 

where no monomial m occurring in an+1 with nonzero coefficient is divisible by 
any l(fi7, p), and if m is a monomial with nonzero coefficient in a1, i < n, 
then ml(fi , p) is not divisible by l(f1, p) for any j < i. 

We adopt some terminology for a representation of the form described in 
this theorem. 

Definition 3. If f1, ..., fn are a decreasing set of elements of A such that 
I(fk, p) is not divisible by l(f, p) for all i < k, then an expression 

n 

g = Ea 
i=1 

for g E I with the property described in Theorem 6 will be called a normal 
form for g. 

The difficulty with using this theorem in our situation is caused by the pres- 
ence of zero divisors in the ring D(p) when p is not irreducible. To deal with 
this problem, we adopt the following definition. 

Definition 4. Let p(T) be a square free polynomial over the field k, and let 
I E A(p) be an ideal. Then a set B = {ff1, ... , fn} of generators for I will be 
called a standard basis for I over D(p) provided that B* generates I* as in 
the field case, and all c(fi, p) are units in D(p). 

Thanks to the Chinese remainder theorem, we have a normal form theorem 
in this more general case as well. 

Lemma 7. Let p(T) be a square free polynomial, and I c A(p) be an ideal. 
Suppose that I has a standard basis B = {f , ... , fn} over D(p). Assuming 
that the fi are listed in descending order, every element g E A(p) can be written 
uniquely as 

n 

g = E aif;+ an+1 ai caA(p) 
i=1 
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where, as in the field case, no monomial m occurring in an+1 with nonzero 
coefficient is divisible by any l(fi, p), and if m is a monomial with nonzero 
coefficient in ai, i < n, then ml(fi, p) is not divisible by l(f1, p) for any 
j <I. 
Proof. Let P = rlPk(T) be the factorization of p(T) into irreducibles. Then, 
by the Chinese remainder theorem, there is an isomorphism 

A(p) -- 171 A(Pk)- 

Since the J have unit leading terms, the image of B in each factor is a standard 
basis for the image of I. Thus we can obtain an expression of the desired form 
in each factor. Using the isomorphism, we obtain an expression 

n 

g= aifi+an+1 aieA(p), 
i=1 

which is in normal form in each component. But then suppose that m occurs 
with coefficient u in a1 and that ml(fi, p) is divisible by l(f1, p) for 1< i. 
Then the coefficient of ml(fi, p), which is uc(fi, p), must reduce to zero in 
each component. Since c(fi, p) is a unit, this means that u reduces to zero in 
each component, and so u = 0. We conclude that we have a normal form for 
g. o 

The following corollary, which tells how to determine the Milnor number, is 
an immediate consequence of the normal form lemma. It says that the index 
of an ideal is the same as the index of the monomial ideal generated by the 
leading terms of elements in a standard basis. Computing this index is just a 
linear algebra problem. 

Corollary 8. Let F be a square free power series in A(p), and suppose that IF 
has a standard basis B over D(p) . Let B ={ l(f, p): f E B}. Then 

YF= dimkA(p)/B*A(p) = deg(p) dimkA/B*A. 

We will explain later how to compute the degree invariant 3. 

2.2. Computing standard bases in power series rings. Buchberger has devised an 
algorithm for computing standard bases of ideals in polynomial rings which is 
based on a criterion for determining when a set of generators is a standard basis 
(see [5 and 20]). Our first task is to adapt this criterion slightly so that we can 
apply it to power series with coefficients in D(p). We begin by introducing the 
R and S operations. 

Definition 5. Suppose that g and h are elements of A(p) . Let 

m = lcm(l(g, p), l(h, p)). 

Then 
S(g, h) =(mc(h, P) mchp) 

S~,h) lh~) - cg . 
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Definition 6. Let G = {g1, ... , gn} be a set of elements of A(p) such that 
c(gi, p) = 1 for all i. Let h be any element of A(p). Then we define 
Rn(h, G, p) by the following rules: 

1. If there is no element g E G such that l(g, p) divides l(h, p), then 
R1 (h, G, p) = h. 

2. Otherwise, let g be the largest element of G such that l(g, p) divides 
l(h , p) and set R1(h, G, p) = S(h , g). 

3. Define R n(h, G. p) = RI(R n-l(h , G. p), G. p) 
Finally, we set R(h, G, p) = lim n-0oRn(h, G, p). 

We make the following observations regarding the R-operation. 

Lemma 9. The R-operation is well defined. Let f = R(h, G, p). Then, if f 
is not zero, l(f, p) is not in the span of the l(g, p) as g runs through G. 
Furthermore, if f $ h, then there are series a(g) E A(p) such that 

h - f = a a(g)g 
gEG 

is in normalform. 
Proof. It is easy to see that the sequence Rn (h, G, p) converges in the adic 
topology on A; in fact, if f is not zero, then it will eventually stabilize. Thus, 
either f is zero or l(f, p) is not in the span of the l(g, p) . The normal form 
claim follows easily by induction and the observation that 

Rn-I(h, G. p) = mg+Rn(h, G. p), 

where ml(g, p) = l(Rn -(h, G, p), p) and g is maximal among elements of 
G such that l(g, p) divides l(Rn -1 (h, G. p), P) . o 

Having defined these operations, we have the following power series version 
of Buchberger's criterion. 

Theorem 10. Suppose that I c A(p) is an ideal, B = {fi, ... , fn} is a de- 
scending sequence of distinct elements of A(p) which generate I, and that all 
c(fi, p) = 1. If for all pairs (i, j), we may write 

(ii) S(fi, fj) = ak fk 5 

where all monomials m with nonzero coefficient in aklj) satisfy ml(fk, p) < 

lcm(l(/ , p), l(fj, p)), then B is a standard basis for I over D(p). 
Proof. Let g be an element of I. Assume that l(fi> p) > l(fj , p) whenever 
i < j. If e E A(P)en, we will write e * B = Zejfi . With these conventions 
established, let 

E(g) ={(eo, .., en) e A(p),n+l: g = e B}. 
If m is a monomial occurring in some component ei of e e E(g) such that 
ml(f,, p) is divisible by l(f , p) for j < i, then we will say that ml(fi) is in 
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the wrong place. Let err(e) be a largest monomial in some eil(/) which is in 
the wrong place if such a one exists, and 0 otherwise. Let Err(g) be the set of 
all err(e) as e runs though E(g) . 

Suppose that Err(g) contains arbitrarily small monomials. Then we claim 
that there is an e E E(g) such that g = e * B is a normal form for g. In 
fact, this hypothesis means that we can approximate g arbitrarily closely by 
elements which can be written in normal form. But it follows easily from the 
uniqueness of the normal form that if {e n} is a sequence of elements of E(g) 
such that e n* B -+ g, then the en converge to an element e with e * B = g 
giving a normal form. 

On the other hand, let t be a minimal nonzero element of Err(g), and 
suppose that t occurs in eil(fi, p). For each i, let mi be the monomial in ei 
such that m l(fi) = t. Let j be minimal such that l(fJ) divides t. Then we 
can write, for each i, 

mi i - mif = m S(/, f1) 

with monomials m' and m'. But by assumption, we know that 

m S(fi, fj) = a(i) * B 

for some a(i) = (a(l), ..., a(')) E E(g) , where all monomials occurring in 

a(l)l(f1) in a~i B are strictly smaller than t . Let v(i) be the vector with 
-m in the ith position, m' in the jth position, and zero elsewhere. Then 
e' = e - Ei(a(i) + v(')) belongs to E(g) and err(e') is by construction smaller 
than err(e). It follows that err(e') is zero. Therefore, every g E I has a 
representation in normal form. This clearly implies that B is a standard basis 
over D(p), as was to be shown. o 

In the next subsection, we consider the problem of doing arithmetic on power 
series. 

2.3. Computations with power series. In order to construct a standard basis for 
an ideal in a polynomial ring, we must develop a method for computing with 
power series. In this subsection, we examine this problem. 

Our concern is computation of a standard basis for the ideal IF= (FX FY) C 

A(p) for a particular power series F. In practice, such a series may arise 
in a number of different ways. For example, it may be presented as a large 
polynomial, all of whose coefficients are known. More interestingly, F may 
be the output of an iterative procedure which computes the coefficients of F 
inductively. We wish to deal with this more general situation. We therefore 
adopt the following representation for F. 

Definition 7. Let Md = {q E k[T]: deg(q) < d}. Let p(T) be a square free 
polynomial of degree d. The power series F E A(p) is represented by a 
function 

F: N x N -+ Md, 
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where F(i, j) is interpreted as a representative aij e D(p) for the coefficient 

of xiyj in F. 

We observe that the function (Fx), which represents OF/0x, is defined by 

(Fx)(i, j) = (i + I)F(i + 1,5 j), 

with a similar formula holding for (?y). 
For elements h E IF which will arise in the course of our computations, we 

adopt a different representation. The power series F defines a map 0(., p): 

D(p)[x, y] E D(p)[x, y] 'IF' 

(hp, h2) -*hFx +h2Fy 

We will compute with elements h of IF which are in the image of the map 
, representing them as ordered pairs of polynomials with D(p)-coefficients. 

Clearly, we can perform arithmetic on such pairs by operating componentwise. 

Lemma 11. Suppose h - (h1, h2) is an ordered pair of polynomials with coef- 
ficients in D(p). If d(h) is the larger of the degrees of h1 and h2, then the 
coefficient of any monomial in h1Fx + h2FY = h can be computed with O(d(h)2) 
coefficient ring operations. 

Proof. Write hi = Ea Jkx y . Then the coefficient brs of Xrys in h is 

brs Z aljkFx(J', k') + a2jkFy(I'/ k, 

j+j'=r, k+k'=s 

and there are O(d(h) ) nonzero terms in this calculation. n 

We also remark that if /(h, p) = h : 0, then we can compute the leading 
term l(h, p) of h by computing in sequence the coefficients of the monomials 
in h , looking for the first nonzero coefficient. However, if h = 0, this procedure 
may not terminate. 

Because the determination of leading terms is such an important part of 
any standard basis algorithm, we expand our abstract data type for elements 
h E D(p)[x, y]e2 to include the leading term of /(h, p) . 

Definition 8. We define an abstract data type vector. An element h of this type 
consists of: 

1. A monomial, called the leading monomial of h. 
2. A polynomial in T, called the leading coefficient of h. 
3. Two polynomials in x and y, with coefficients in the polynomials in 

T, called the components of h. 

Vectors are used to represent elements of A(p) as follows. Let h $ 0 be 
an element of A(p) which can be written h = /((h1, h2) p), where (h1, h2) 
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is a pair of polynomials. Then h is stored as a vector with the leading mono- 
mial field set to l(h, p), the leading coefficient field set to c(h, p), and the 
components set to hi and h2. 

Vectors of this type are added together by adding their components and re- 
computing the leading monomial and coefficient. They are multiplied by a 
monomial m by multiplying the components and the leading monomial by 
m. Scalar multiplication (by a nonzero scalar u) is computed by multiplying 
the leading coefficient and the components by u. We abuse notation and write 
q(h, p) for the q(, p) applied to the components of h, l (h, p) for the leading 
monomial, and c(h, p) for the leading coefficient. 

Notice that addition is only defined on h and g when q(h + g, p) $ 0. If 
the sum is zero, the search for a new leading coefficient in the sum will never 
terminate. 

Algorithm 12. Algorithm for R. 
Input: A square free polynomial p(T), a vector h, and a finite list G of 

vectors g-i, representing elements in A(p) in the manner described above, such 
that h = /(h, p) and all gi = 0(g) are nonzero. We assume further that the 
l(gi, p) are distinct and all c(g-, p) = 1 . A further condition, discussed in 
Lemma 13, is necessary to guarantee termination. 

Output: A vector r representing R(h, G, p) (here G = g p)}) . 
Step 1: Set rj:= h. 
Step 2: While there exists i such that (gip) divides l(r,?p),do: 

Let g be the element of G which is maximal among all g E G such that 
l(g, p) divides l(r, p). Set 

(2) r :r-(rp)l(r,5 p)/l(g-;, p)) 
-# 

carrying out arithmetic componentwise. 
Determine l(r', p) by searching for a nonzero coefficient modp( T) . 

Step 3: Return r. 

That this algorithm computes what it claims to is a simple consequence of 
the definition of the R-operation. However, the following lemma clarifies when 
the procedure actually terminates after finitely many passes through the loop in 
Step 2. 

Lemma 13. If h has no normalform expression in the gi, then Algorithm 12 
terminates. 

Proof. Suppose the algorithm fails to terminate. Then we must have R(h, G, p) 
= 0, and we conclude by Lemma 9 that we can find ai so that 

h = : aig1, 

and this expression is in normal form. o 

In our discussion of complexity, we will require the following result. 
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Lemma 14. Suppose that h is a vector. Let d(h) be the degree of the largest 
monomial occurring in a component of h, and let dl(h) = deg(l(h, p)). Also, 
we define 

r(h) = #({m: m a monomial with m > l(h, p)}). 

Let G be a list of vectors, and set 

d(G) = maxfd(g): g E G}, r(G) = minfr(g): g E G}. 
Finally, let f = (hG, p). Then f is computed by Algorithm 12 using 

2 - 
O((deg(p) )(r(f) - r(h))(d(G) + dl(h))) 

field operations. 
Proof. Addition of polynomials of degree d in two variables can be computed 

2 with O(d ) coefficient ring operations. Let hi be the vector computed in the 
ith pass through the loop in Algorithm 12. Since hi h11 - mg for some 

g E G. hi can be computed from hil by O(max(d(G), d(hi1))2) coefficient 
ring operations. In addition, since ml(g, p) = l(h1, p), we must have 

d(hi) < max(d(g) + dl(hi_ 1), d(h_ 1)). 

We conclude from this that 

d (hi) < max(d (G) + dl(f ) - dl(G), d (h)) . 

Therefore, each computation of hi in (2) requires at most 

T, = C1(max(d(G) + dl(f), d(h))2) 

coefficient ring operations. 
Again, passing through the loop, we must compute the leading term l(hi, p). 

This involves verifying that T2(i) = (r(hi) - r(hi_1)) monomials have zero 

coefficients; each verification requiring C2(d(hi)2) coefficient operations. To 
finish the lemma, we sum over passes through the loop: 

time < Z(T1 + C2T2(i)(d(h 

Using the fact that the number of passes through the loop is bounded by the 
number of monomials between l(h, p) and l(f,p), which is r(f) - r(h), and 
substituting our estimates for T1, T2, and d(hi), we see that computing f 
requires at most 

O((r(f) - r(h)) max(d(h), d(G) + dl(h))) 

coefficient ring operations. Converting coefficient ring operations to field oper- 
ations completes the proof of the lemma. o 

We also have a means for computing the S-operation on power series repre- 
sented as vectors h e A(p) 0 A(p) . 
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Algorithm 15. S-operation. 
Input: Two vectors h and g representing elements h and g in A(p) such 

that S(q(h, p), q(g, p)) 0. 
Output: A vector s such that q(s, p) = S(h, g, p). 
Step 1: Compute m =lcm(l(h, p), l(g, p)). 
Step 2: Compute 

_ mc(h, p) g mc(g p) - 

1(9-,P) 
9 

l(h, p) 

doing arithmetic componentwise. 
Step 3: Search for the leading coefficient of r'. 
Step 4: Return s, together with its leading term and coefficient. 

An analysis similar to, but simpler than, the one given for the R-operation 
gives the following estimate. 

Lemma 16. Let s = S(g, h, p). Then 

d(?) < d(m) + max(d(g) - dl(g), d(h) - dl(h)), 

where m = lcm(l(g, p), l(h, p)). Computation of s by Algorithm 15 requires 

O(deg(p) d (S) (r(s) - r(m))) 

field arithmetic operations. 

2.4. Trees of standard bases. In this subsection we discuss how to deal with the 
presence of zero divisors in our ring of coefficients. Our method will consist 
of "discovering" factors of the polynomial p(T) which defines D(p), and then 
splitting up D(p) into corresponding factor rings. 

In general, if q(T) is a divisor of p(T), there is a natural reduction map 
D(p) -+ D(q), inducing a reduction map A(p) -+ A(q). In practice, if F is a 
power series in A(p) represented by a function F, then the image of F in a 
quotient A(q) of A(p) is represented by the function obtained by reducing the 
values of F modq . Therefore, we can carry out arithmetic in any factor ring 
of A(p). We will therefore freely view any element of A(p) also as an element 
of A(q) via the reduction map when q divides p. For example, if f e A(p) 
and q divides p, then l(f, q) will denote the first coefficient of f which is 
nonzero mod q . 

It is important to notice that l(f, q) and l(f, p) are not in general equal. 
Indeed, the coefficient c(f, p) might reduce to zero in D(q) . However, when- 
ever c(f, p) is a unit modp, then l(f, q) = l(f, p) for all q dividing p. 

The following algorithm splits up the polynomial D(p) into factors pi (T) so 
that, if Fi is the image of F in D(pi), then the leading coefficient of l(Fi, pi) 
is a unit modpi. Among other things, this guarantees that the multiplicity of 
F, at all maximal ideals of A(pi) is the same. 
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Algorithm 17. Constant multiplicity. 
Input: A square free polynomial p(T) and a power series F in A(p), repre- 

sented as a function in the manner described above. We assume that the image 
of F in each irreducible component of D(p) is known to be nonzero. 

Output: A list of triples (uk(T), m, pk(T)), each consisting of a polynomial 
uk(T), a monomial m, and a polynomial Pk(T) such that 

1. uk(T) is the inverse of the coefficient of xiy' modPk(T) . 
2. m is the leading term of F viewed modpk-this means that m is the 

first monomial with a coefficient not divisible by Pk. 
3. The coefficient of m is a unit modpk-meaning that F(i, j) is rela- 

tively prime to k 
4. P = Pk(T). 
5. The Pk are pairwise relatively prime. 

0 0 
Step 0: LIST :={}. m:= xy 
Step 1: While p $ 1 do: 

Let u be the coefficient of m in F. 
Let d := gcd(u, p) . 
If d $ 0 do: 

Let q := p/d. 
Append {(u 1 mod q, m, q)} to LIST. 
p := d. 

m := next monomial in order. 

Lemma 18. Algorithm 17 terminates. Further, the list it returns has the claimed 
properties. 

Proof. Each pass through the algorithm for which d $ 0 holds will reduce the 
degree of the polynomial p . Therefore, the algorithm can fail to terminate only 
if there is a factor q of p such that all coefficients u of F are congruent to 
zero mod q . This contradicts our assumption that F is nonzero in all factors of 
A(p). Therefore, the algorithm terminates. The correctness of the algorithm 
follows by induction. In particular, let m be the first monomial in F with 
nonzero coefficient u modp . If d = gcd(u, p) is 1, then the algorithm returns 
{(u -modp, m, p)} which has the desired properties. If d $ 1, then d is a 
factor of p and u is invertible modp/d. Since the degree of d is smaller than 
p, we may assume that the algorithm works correctly on F and d, computing 
a list LISTO. Then, since p/d and d are relatively prime, the list LIST= 

LISTo U {(u 1 modp/d, m, p/d)} also has the desired properties. o 

Lemma 19. Algorithm 17 uses at most O(deg(p) 2+ CF deg(p)) field operations. 

Proof. Let pl, ... pk be the polynomials which successively play the role of 
p in the course of the algorithm, where pI is the input polynomial p. Suppose 
that {{vi, min, qj}i} is the output of the algorithm, as i runs from 1 to k . If 
m is a monomial, let r(m) be the number of monomials greater than m in the 
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ordering. Since the various polynomial operations modp carried out in each 
pass through the loop require O(deg(p)2) coefficient operations, the number of 
operations T for the algorithm can be estimated as 

T < C (Z deg(pi)2 (r(mi) - r(mi_ 1))) 

where C is a constant. Since all deg(pi) < deg(p), we may write 

T < C (deg(p) (jdeg(pj)(r(m) -r(mjj)) 

This sum can be rearranged to yield 

T < C (deg(p) ( deg(qj)r(m1)))i 

If deg(m) > 1, there is a constant C' such that r(m) < C' deg(m) (deg(m) - 1). 
Therefore, we may split up our sum into two parts: 

T < deg(p) (C1 ( deg(q1))) + C2 (Zdeg(qj)deg(m1)(deg(m1) - 1)) 

where A is the set of indices where deg(mi) < 1 and B is the set where 
deg(mi) > 1. The first sum is bounded by deg(p) since E deg(qi) = deg(p), 
and the second sum is bounded by CF deg(p) by [4, p. 764]. It follows that the 
time T is bounded by O(deg(p)2 + CF deg(p)) as claimed. 5 

We are now ready to begin describing our standard basis algorithm. We will 
organize our data in a tree structure. This tree will be rooted at the top at a 
node called root. Every node will have a finite (possibly empty) set of child 
nodes, and every nonroot node will have a unique parent node. 

Each node n of the tree will contain the following data: 

1. A pointer to its parent node (denoted n -- p) . 
2. A set of pointers to its child nodes. 
3. A square free polynomial q(T) (denoted n -- r). 
4. A vector representing an element of A(n -+ r), denoted n -+ vec. 
5. Two boolean fields (denoted n -+ x and n -+ y). 

We will write x(n) and y(n) to denote respectively the power of x and 
y appearing in the leading term of O(n -+ vec, n -+ r) E A(n -+ r). We will 
abbreviate and write: 

0(n) = q(n - vec, n ) - , 

c(n) = c(n - vec, n r), 

1(n) = l(n - vec, n - r). 

The following definition characterizes the relationship between the various 
fields in a node and the various nodes in the tree. 
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Definition 9. Suppose p is a square free polynomial in k[T] and F is a power 
series in A (p) . A tree T of nodes as described above will be called compatible 
with p if, whenever n is a nonroot node, and c is one of its children, the 
following myriad conditions are met: 

1. root p= root. 
2. root-r=p(T). 
3. root x =root+ y = false. 
4. c(n)= 1. 
5. c - r divides n -r. 
6. rH c -+ r = n -+ r where the product is taken over all children c of n. 
7. /(c) < /(n). 
8. n x = true if and only if either x(n) = 0 or x(n p) =true. 
9. n y = true if and only if either y(n) = 0 or y(n - p) = true. 

To understand all of this, associate to every node n the ring D(n -+ r) . Then 
the root node root corresponds to D(p), and if c is a child node of root, then 
there is a reduction map D(root) -+ D(c). Even more, by property 6, there is 
an isomorphism (by the Chinese remainder theorem) 

D(n -+ r) -+H D(c -+r), 

where the product is taken over all children c of n. Then n -+ vec represents 
an element of A(n -+ r) via the map $(., n -+ r) . Notice that our requirement 
that c(n) = 1 implies that the image of the leading term 1(n) in A(c -+ r) is 
the same as 1(n) for any descendant c of n. 

Definition 10. Suppose that T is a tree compatible with F and p. If n is a 
node in T, we derive three sets from n. 

1. Let 1l(n) denote the set of nodes on the path between n and root. In 
more formal terms, let n1* (n) be defined recursively by the rules: 

n E n* (n). 
If b E I* (n), then b + p E n* (n) . 

Then n(n) = n*(n) - root. 
2. When n is a node of T, we let 

B(n) = {b -+ vec: b E n(n)}. 

3. Then, if n is a node of T, we define I(n) to be the list of elements in 
A(n -- r) given by the rule 

I(n) = {0(b) modn -+ r: b E fl(n)}. 

The following definition summarizes the type of T we would like to con- 
struct. 

Definition 11. A tree T, compatible with p and F, is called a tree of standard 
bases for F if, for each base node (that is, each node without children) b, the 
set I(b) is a standard basis for IF modb -+ r over D(b,-+ r) . 
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Notice that the polynomials b -+ r, as b runs through base nodes of T, 
yield a factorization of p into pairwise relatively prime polynomials. A tree of 
standard bases T gives us a standard basis I(b) for the image of IF in each 
factor ring A(base -+ r) . Since 

A(p) =HA(base - r), 

T partitions A(p) into disjoint subrings so that in each subring we have a 
standard basis for the image, in that subring, of IF . 

The following procedure is the fundamental process by which a compatible 
tree T is extended downward. 

Algorithm 20. Tree extension. 
Input: A compatible tree T for a power series F and a square free polyno- 

mial p, a selected base node n in T, and a vector h representing an element 
of A(n -+ r) . To guarantee termination, h must satisfy an additional condition 
described in Lemma 22. 

Output: A compatible tree T, consisting of T with a set of child nodes 
attached to n. In addition to the compatibility conditions, these new child 
nodes of n, c1, ..., cn, satisfy 

c -+ vec = R(h, I(n), c; - r). 

Step 1: r := R(h, I(n), n - r) . 
Step 2: i := 1, p := n -r. 
Step 3: Create a new node ci . Set it up so that ci is the ith child of n. 
Step 4: Compute polynomials a and b so that ac(ri, p) + bp = d, where 
d=gcd(p, c(,? p)). 
Step 5: Compute an inverse c(r, p/d)-1 for c(r, p)modp/d. 

Set ci vec:= c(r', p/d) r. 
Set ci r-:= p /d. 
Set ci x :=Ci y := false. 
If x(ci -vec) =0 or n x =0 then c -x :=true. 
If y(ci vec) = 0 or n-y = 0 then ci y true. 

Step 6: If d = 1, stop. Otherwise, i := i + 1, p := d, and r: 
R(r-, I(n) , p) . 

Go to Step 3. 

Lemma 21. Suppose that Algorithm 20 halts when operating on h and n e T. 
Then it produces a tree with the claimed properties. 

Proof. Informally, the algorithm proceeds as follows. It reduces h by the set 
of ancestors of n, working modp. Calling the result r', it attempts to invert 
the lead coefficient c(r', p) of r' modp. However, this coefficient may not be 
relatively prime to p. Therefore, it computes d = gcd(c(r, p), p) . It can invert 
c(r', p) modp/d, so it does. Then it creates a node cl with cl -+ r = p/d. It 
sets c- vec = c(r, p/d)[ r modp/d. At this stage it has computed the 
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reduction of h by the ancestors of n in the component of A(p) defined by 
p/d = 0. Now it must consider the places where d = 0. The leading term 
of r' modd is no longer the leading term modp, since this lead coefficient 
reduces to zero modd. Therefore, it sets p := d and continues to reduce. 
Any new nodes ci which the algorithm attaches will have ci -+ r dividing d. 
Inductively, this guarantees that all of the ci -+ r are pairwise relatively prime. 
Since the algorithm halts when d = 1, the product of the ci -+ r will be p. 
The remaining properties of the extended tree are clear. 5 

Lemma 22. Suppose that Algorithm 20 fails to halt when operating on an ele- 
ment h and a node n. Then there exists a polynomial q dividing n --+ r and 
a list of power series ai such that 

h Zaifi (mod q) 

is a normal form for h = q$(h, q) in the factor ring A(q) and the fi are the 
elements of I(n). 
Proof. Each pass through the loop in Algorithm 20 reduces the degree of the 
polynomial p, and the algorithm halts if p has degree zero. Therefore, the 
algorithm can only fail to halt if one of the reduction steps fails to halt. But by 
Lemma 13, this can only happen if the stated condition holds. 5 

Now suppose that T is a compatible tree. The following adjacency condition 
allows us to avoid unnecessary reduction steps in our standard basis algorithm. 

Definition 12. Let n be a node in a compatible tree T. If adj $ n belongs to 
FI(node) , then we will say that adj is adjacent to n if Ix(adj) -x(n)I is minimal 
among all elements of n(n). The set of nodes adjacent to n will be denoted 
Adj(n). (Notice that adjacency is a relation between the series represented by 
the nodes, and does not refer to their positions in the tree.) 

This algorithm creates a tree of standard bases for F and p . 

Algorithm 23. Standard basis. 
Input: A square free polynomial p (T) and a square free power series F E 

D(p) represented by a function in the manner described above. 
Output: A tree of standard bases for F and p . 

Step 0: Create a root node root for T and set root -+ r := p . Call Algorithm 
17 on Fx and p, yielding a list LIST. 
For each entry (a, m, q) of LIST: 
Call Algorithm 17 on Fy and q, obtaining a list LISTB. 
For each entry (b, n, w) in LISTB: 

if l(Fx, w) > l(Fy, w) then: 
Create a child node child of root with: 

child - r := w . 
child - vec := [a, 0] mod w . 

Call Algorithm 20 (Tree extension) on child and [0, b]. 
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otherwise: 
create a child node child of root with: 

child r:= w. 
child - vec := [0, b] mod w. 

Call Algorithm 20 (Tree extension) on child and [a, 0]. 
Step 1: Until all base nodes base of T have base -+ x = true and base 

y = true, do: 
Let base be a base node of T with at least one flag set to false. 
Let prev be an element of Adj(base). 
Compute h := S(base -+ vec, prev -+ vec, base -+ r) . 
Carry out Algorithm 20 (Tree extension) on node and h. 

Step 2: Return T. 
We now begin the process of proving that this procedure terminates, and 

delivers a tree of standard bases. 

Lemma 24. Step 0 ofAlgorithm 23 terminates. 
Proof. The calls to Algorithm 17 terminate since we assume F, F and Fy do 
not reduce to zero at any maximal ideal of k[T]/p[[x, y]]. If one of the calls 
to Algorithm 20 fails to terminate, then we conclude that there is a divisor q 
of p such that Fx and Fy have a common factor mod q . But this contradicts 
our assumption that F is square free. Therefore Step 0 terminates. n 

Lemma 25. At the completion of Step 0, T is strictly compatible. 
Proof. This is a consequence of the termination of Step 0 and the actions of 
Algorithm 20. o 

Lemma 26. Suppose, while executing Algorithm 23, we are at the top of the loop 
in Step 1. Then every node n of T has the following properties: 

1. The set Adj (n) contains a unique element. In fact, either 

x(n) = maxx(n) and y(n) =min y(n) 
11(n) 11(n) 

or 

x(n) = minx(n) and y(n) =maxy(n). 
11(n) 11(n) 

2. Let p and a be respectively the parent node of n and the sole member 
of Adj(p). Then 

l(n) < lcm(l(p), I(a)). 

3. Let p be n -- p and let b be any element of FI(n). Then we may write 

S(p -+ vec, b -+ vec) Za(w)w -- vec (mod n -+ r), 

where the sum is over 11(n) and where every monomial m occurring 
with nonzero coefficient mod n -+ r in some a(w) satisfies 

ml(w) < lcm(l(p), l(b)). 
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4. For any node n, 1(n) is not in the span of the l(b) as b runs through 
FI(n) . 

Proof. We proceed by induction. Let us consider the tree prior to the first exe- 
cution of the loop in Step 1. Each base node base has one nonroot ancestor p. 
Since base -+ vec was obtained by reducing something smaller than p -+ vec 
by p -+ vec, property 4 must hold. Properties 2 and 3 are satisfied vacuously. 
As for property 1, clearly each base node has at most one adjacent ancestor. 
The stronger claim holds as well. To see this, observe that if m and n are 
monomials such that x(m) < x(n) and y(m) < y(n), then obviously m di- 
vides n. But the reduction operation guarantees that /(base) is not divisible 
by /(base -- p) . Therefore, one of the two conditions in 1 holds. 

Now suppose that T has the stated properties after some number of iter- 
ations of Step 1. Let base be a base node of T. We will check that after a 
pass through Step 1, T still has all of the desired properties. If all base nodes 
have both flags set, the algorithm halts and we are done. So suppose that b is a 
base node of T with at least one flag false. By the inductive hypothesis, Adj(b) 
contains one element; call this element a. We must check that all of the nodes 
attached by Algorithm 20 to b have the claimed properties. Let c be such a 
node. 

We know that 

child -+ vec _ R(S(b -? vec, a -? vec), B(b), c -? r) (mod c -? r) . 

Since this R-operation halted, claim 4 must hold. Similarly, claim 2 is clear. 
As for claim 1, let 

U+ = {b E rl1(child): x(b) > x(child)}, 

U_ = {b E Jl7(child): x(b) < x(child)}. 

If either set is empty, we have settled claim 1; therefore, let us assume that both 
are nonempty. Let u+ be the element of U+ such that x(u+) is minimal, and 
let u_ be the element of U_ such that x(u_) is maximal. Suppose for the sake 
of argument that l(u+) > I(u_). Then u_ is the unique element of Adj(u+) by 
the structure of T and the inductive hypothesis. Since 1(c) < lcm(u+, u_) by 
claim 2, we can conclude that l(child) is a multiple of l(u_). This contradicts 
claim 4. 

To finish, by properties of the R-operation, we may write 

h = S(b, a) = E a(b)(b -- vec) + (c - - vec) 
bEB 

with Ea(b)(b -- vec) in normal form. Let bl be any ancestor of b, and let 
g(bl) = S(b -+ vec, bl -+ vec). By claim 1, lcm(l(b), l(bI)) must be divisible 
by lcm(l(b), 1(a)). This means that we can find monomials ml and m2 so 
that 

g(bl) _ mIS(b -+ vec, a vec) 
+ m2S(a -vec, bl --+ vec) (mod c - - r). 
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Claim 3 follows easily from this expression by induction. o 

Corollary 27. The loop in Step 1 ofAlgorithm 23 is executed onlyfinitely many 
times. 
Proof. This follows from the Hilbert basis theorem and property 4. E 

Because of this corollary, we see that Algorithm 23 can fail to terminate 
only if one of the R-operations carried out in the calls to Algorithm 20 fails to 
terminate. As we will see, the assumption that F is a square free power series 
will guarantee that this cannot happen. 

Theorem 28. Suppose that T is a tree satisfying the conditions of Lemma 26. 
Let b be a base node of T and let a be the unique element of Adj(b). If there 
exists a nontrivial divisor q of b - - r such that 

R(S(b -vec, a -vec), B(b), q) - 0 (mod q), 

then I(b) is a standard basis for the image I(q) of IF in the factor ring A(q) 
of A(p). 
Proof. Write I(b) = {fo, ... , fn }. It follows from the inductive property 3 of 
Lemma 26 that S(fi, fj) has the property required by the criterion in Theorem 
10 for all pairs fi and fj with both i and j less than n. The additional 
hypothesis of this theorem guarantees that the criterion also holds for S(fn , g) , 
where g is the unique element adjacent to fn = 0(b -? vec, b -? r). However, 
as in the proof of Lemma 26, if fk is a nonadjacent element, then there are 
monomials ml and m2 so that 

S(fn , fk) m1S(fn, g) + m2S(gfk) (modc ,r). 

It is easy to see that this expression also satisfies the criterion of Theorem 10. 
Therefore, I(n) is a standard basis as claimed. o 

Corollary 29. Algorithm 23 terminates. 

Proof. Suppose the algorithm does not terminate. Then, by Lemma 26 and our 
results on the termination of Algorithm 20, there is a node n such that the 
set I(n) is a standard basis for the image of IF in the factor ring A(n - + r). 
However, since either n -+ x or n y is false for all ancestors of n, then either 
no ancestral node of n has x(n) = 0 or no ancestral node has y(n) = 0. But 
this contradicts the assumption that IF has finite codimension in A(n -r), 
since it implies that no element of IF has leading term a power of x or y. E 

Corollary 30. Algorithm 23 correctly computes a tree of standard bases for IF . 

Proof. Upon termination, I(b) for every base node b of T satisfies all of the 
properties listed in Lemma 26. Furthermore, there is an ancestor n E 11(b) such 
that x(b) = 0 and y(n) = 0, or x(n) = 0 and y(b) = 0. Then it follows from 
Lemma 26, part 1, that, if h = R(S(b - + vec, n -+ vec), I(b), b -+ r) $ 0, then 
x(h) < 0 or y(h) < 0. Therefore, we must have h = 0. But then it follows 
as in the proof of Lemma 29 that I(b) satisfies the criterion of Theorem 10, 
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and therefore I(b) is a standard basis for the image of IF in A(b -? r) . This 
means that we have constructed a tree of standard bases. 0 

We are finally able to give a simple method for computing the invariant F. 

Lemma 31. Let T be the tree of standard bases computed by Algorithm 23 for 
a power series F in A(p). For each base node b of T, let (5(b) be the (5 
invariant for the image of F in A(b -- r) . Let a be the unique node adjacent 
to b. Then 

(3) (5(b) < deg(lcm(l(b -+ vec, a -+ vec))). 
Proof. Let m be a monomial, and let 

U+ = {n E J(b): x(n) ? x(m)}, 

U_ = {n E I(b): x(n) < x(m)}. 

If m is not in the span of the leading terms of B(b), then U+ must be 
nonempty. U_ is nonempty, since there is a node n with x(n) = 0. Let 
u+ be the element of U+ with x(u+) minimal. Let u_ be the element of 
U_ with x(u_) maximal. If m is not divisible by l(u_), then y(m) < y(u_) 
and therefore deg(m) < deg(lcm(u_, u+)). It is not hard to see, however, that 
u+ and u_ are adjacent in T, and therefore, by Lemma 26, we must have 
deg(m) < a, where a is the right-hand side of the inequality (3). We conclude 
that every monomial of degree at least a is in the span of the leading terms of 
B(b). This implies easily that every monomial of degree at least a is in the 
ideal IF and therefore that 5 < a . o 

2.5. Complexity of the standard basis algorithm. We will now estimate the com- 
plexity of the algorithm described above for computing a tree of standard bases. 
We will determine a bound on the number of field operations required to com- 
pute such a tree, assuming as always that F is known to be square free. 

Let node be a base node of a tree of standard bases T constructed by Algo- 
rithm 23 from the power series F. Let 

Il(node) = {nodeo, ..., noden = node} 

and, to simplify notation, let pi(T) = nodei -+ r and fi = nodei -+ vec. In the 

notation of Lemma 14, let di = d(fi), ri = r(Ji), and dli = r(fi). 

Lemma 32. For any base node node, and for all 0 < i < n, we have di < 

dli - dlo . 

Proof. As usual, we proceed by induction. We know that there is an element u 
of k[T] such that fo = [u, 0]. Then f, = R(S([O, 1], [u, O]), p1(T)). There- 
fore, we may write [0, 1] a[1, 0] + fi (mod pi(T)), and every monomial m 
in a satisfies ml([1, 0], p1) > l(f1, p1). This means that deg(m) + dlo < dl1 
and therefore deg(m) < d11 - dlo . We conclude that d1 < dl - dlo as claimed. 
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Now suppose d. < d11 - d1o for all 0 < 1 < i < n. Then, assuming nodet is 
the unique element in Adj(nodei), we have 

SVI ft) =akh+ i+l 
k=O 

If mk occurs in ak, then we have deg(mk) + dik < dli+I, and therefore 
deg(mk) < dli+l-dlk . This gives us deg(mk)+dk < dli+1 -dlk+dk < dli+1 -d10 
by induction. o 

We now have enough information to get a bound on the complexity of com- 
puting the Milnor number. 

Theorem 33. Let F be a square free power series in A(p) and let T be a tree 
of standard bases for IF. Suppose that all terms of F of degree at most ((F) 
have been computed. Then T can be computed by Algorithm 23 in less than 
O(((5(F)4 + 1) deg(p)2) field operations. 
Proof. It is easy to see that our algorithm does not refer to the coefficients of any 
monomial in F of degree greater than (5(F) . Therefore, we need only consider 
the time spent computing a tree of standard bases. The constant multiplicity 
algorithm requires O(deg(p)2 + CF deg(p)) operations. Since there is a constant 
C such that c(F) < Cyu(F) < C deg(p)62, we will be done if we can show that F ~~~~~ the remainder of the algorithm requires at most O(6(F)4 deg(p)2) operations. 
Let us first determine the time necessary to extend the tree by one step from a 
node n in Step 1 of Algorithm 23. Let h = n - - vec and let g = adj -- vec 
where adj is the unique node adjacent to n. Let q = n -- r. Then we compute 

= S(h, g, q), and from Lemma 16 and Lemma 32 we conclude that 

d(s) < d(m), 

where m = lcm(l(g, q), l(h, q)). The time required for this computation is 

To = Co(d (m)2(r(J) - r(m)) deg(q)2). 

The next step is to compute f = R(s, I(n), q). Our estimates from Lemma 14 
tell us that this requires 

- ~~#2 )2) T1 = C1 ((r (f) - r(s))(dl(h)) deg(q) ) 

where we have used the fact that dl(I(n)) = dl(h). We conclude from this that 
the time needed to attach the first child node to n is bounded by 

)22 . O(deg(q) (r(f) - r(h))d(f) ) 
In attaching the next child node, we continue to reduce f mod I(n), working 
now modq' = q/d, where d = gcd(c(f, q), q). Repeating the analysis above, 
we see that the total time to attach all the child nodes is given by a sum over 
the child nodes, 

T(n) = C2 (r(f1) - r(fi 1 ))dl(j2k, 



COMPUTATIONAL COMPLEXITY OF RESOLUTION 823 

where 

i= child -+ vec, 

k= deg(q), 

ki = ki-1 - deg(childi -r), i > 2, 

and by convention the subscript 0 refers to n itself. This sum may be rearranged 
to yield 

time = C3 E(r(J) - r(f0))(deg(childj - + r)2d1(Ji)2). 

The total time for the algorithm is found by summing this time estimate over 
all nonbase nodes of the tree. Recall that 

6 (F) > maxn(d 1(n)) , 

deg(p) > maxn deg(n - r)0. 

Then our sum can be estimated by 

time < C4 deg(p)(5(F)2 E(r(n) - r(n -+ p)) deg(n - + r). 

Let Q be the sum in the above expression. Let P be the set of nonbase nodes 
in T, and let us write n I-4 p when p is the parent node of n. Then 

Q = (r(n) - r(n -p)) deg(n-4 r) 
= 

E r(n) deg(n r) - E r(n -- p) deg(n -- r) 

= Q1 - Q2, 
where 

Q1 = r(n) deg(n - r) 
and 

Q2= r(p) E deg(n -? r) - r(root) deg(root -? r). 
pET n-+P 

Using the fact that 

S deg(n -- r) = deg(p -r), 
n-+p 

which is a property of compatible trees, we conclude that 

Q = 5 r(n) deg(n -? r) - r(root) deg(root -? r). 
T-P 

Since, for each base node n we must have r(n) < C(2, we obtain the desired 
estimate. 0 

3. RESOLVING SINGULARITIES 

In this section we apply our results on computing deformations to the prob- 
lem of blowing up plane curve singularities. Before tackling this problem, we 
need some algorithms for basic operations in rings with zero divisors. 
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3.1. Coefficient ring operations. We begin by describing some straightforward 
generalizations of standard algorithms for computing greatest common divisors, 
square free factorization, and primitive elements to polynomials over D(p) 
when p is a square free, but possibly reducible, polynomial. We do not claim 
any great originality for these techniques, but we spell them out explicitly so 
that we can use them in careful complexity estimates. 

Since D(p) is abstractly isomorphic to a product of fields, D(p)[x] is iso- 
morphic to a product of PID's. Therefore, every ideal in D(p)[x] is principal. 
The following generalization of the Euclidean algorithm, which splits D(p) up 
into factor rings, computes the generator of an ideal (u, v) in D(p)[x]. 

Algorithm 34. Extended ged (EGCD) . 
Input: A square free polynomial p E k[T] and two polynomials 

m n 
i i 

U=Z2m 1, VM=>jV n 1x 

i=O i=O 

in D(p)[x] = k[T, x]/p(T). 
Output: A list of triples EGCD(u, v, p) = {(qj, aj, b1, wj)}, where qj E 

k[T] and each of aj , b, and wj are polynomials in D(p)[x]. This list 
satisfies: 

1. The qj are pairwise relatively prime, and H qj = p. 
2. For each j, we have the identities 

u -= aiwj (mod qj), v-bjwj (mod qj). 

Step 0: If v = 0, then return {(p, 1,0, u)}. 
Step 1: Find polynomials a, b, and d so that avO + bp = d, where d = 

gcd(p, vo). 
r =0. 
Carry out the following operations, doing arithmetic modp/d: 

t := deg(u) - deg(v) . 
while t > 0 do: (division) 

u := u-(uo/vO)xtv. 
r := r + (UO/VO)xt . 
t := deg(u) - deg(v) . 

U :=v. 
v :=u. 

LIST, := EGCD(u', v', p/d). 
LISTU:= f }. 
For each (q, a, b, d) E LIST1 do: 

LISTU:= LISTUU { (q, b + ar modq, a, d)}. 
LISTZ := { }. 
If deg(d) > 0, then 

LISTZ := EGCD(umodd, vmodd, d). 

Step 3: Return LISTU U LISTZ . 
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Lemma 35. Algorithm 34 does what it claims to. 

Proof. Suppose that ql and q2 are relatively prime polynomials and that ql q2 
= p. Let u and v be polynomials in D(p)[x]. Then it is easy to see that 
if LIST1 and LIST2 satisfy the conditions required of EGCD(u, v, qj) and 
EGCD(u, v, q2), respectively, then LIST = LIST, U LIST2 satisfies the condi- 
tions required of EGCD(u, v, p). This fact is the basis for an inductive proof 
of the correctness of the algorithm. 

Let us suppose first of all that deg(p) = 1 . Then Algorithm 34 reduces to the 
Euclidean algorithm, and therefore works properly. Now consider the situation 
when deg(p) is bigger than one. Clearly the algorithm works if deg(v) = 0. 
So suppose that deg(v) > 0. Notice that the lead coefficient vo of v is a 
unit in D(p/d), where gcd(p, vo) = d. It follows that the ideal (u', v') c 
D(p/d) is the same as the image of (u, v) in D(p/d). Since the degree of 
v' is smaller than that of v, we may assume by induction that the algorithm 
computes EGCD(u', v', p/d) correctly. This being the case, it is easy to see 
that the "change of coordinates" which gives LISTU is a correct derivation of 
EGCD(u, v, p/d) from EGCD(u', v', p/d). Since p and p/d are relatively 
prime, the observation made above shows that LISTUU LISTZ has the desired 
properties. 0 

Lemma 36. Algorithm 34 computes EGCD(u, v, p) using 

O(deg(p)2 deg(u) deg(v)) 

field operations. 
Proof. Let T(u, v, p) be the number of arithmetic operations necessary to 
carry out Algorithm 34 on polynomials u, v , and p . The division loop requires 
O((deg(u)-deg(v)) deg(v)) operations in the ring D(p/d), for a total of TdiV = 
O((deg(u) - deg(v)) deg(v) deg(p/d)2) field operations. The shift operations 
b |-- b + ar mod q require, each, at most C deg(v) (deg(u) - deg(v)) deg(q ) 
Since E deg(q) < deg(p/d), we conclude that the time for each pass, Tpass, 
satisfies 

Tpass < C deg(v)(deg(u) - deg(v)) deg(p/d)2 

From the recursion we then obtain 

T(uvp)=Tpass +T(uvd)+T(u',v ,p/d). 

It follows by induction that 

T(u, v, p) < C(deg(u) - deg(v)) deg(v) deg(p/d)2 + C deg(u) deg(v) deg(d)2 

+ C deg(v)2 deg(p/d)2, 

which is less than O(deg(u) deg(v) deg(p) ). 2 

As an application of this extended gcd algorithm, we consider the problem 
of "square free factorization" in a ring with zero divisors. Suppose that k is a 



826 JEREMY TEITELBAUM 

field of characteristic zero and p(T) is a prime polynomial in k[T]. Letting 
D(p) = k[T]/p as usual, suppose that q is a polynomial in D(p)[x]. Then, 
since D(p) is a principal ideal domain, we can write q = ql q2q3 * 

n 
qn where 

the qi are relatively prime polynomials. The "square free" part sqfr(q) of q is 
then the polynomial q1 q2 ... qn . We can compute the square free part sqfr(q) 
very simply since sqfr(q) = q/gcd(q, aq/&x). 

As we remarked earlier, every ideal in D(p)[x] is principal. Therefore, it 
makes sense to speak of the square free part of an element q E D(p)[x]. The 
following algorithm computes this square free part, by exploiting our extended 
gcd algorithm. 

Algorithm 37. Square free factorization. 
Input: A square free polynomial p(T) with coefficients in a field k of char- 

acteristic zero. A polynomial q(T, x) with coefficients in D(p). 
Output: A list of pairs (pi, qi) such that 

1. The pi are relatively prime, and H1pi = p. 
2. qi is the square free part of the image of q in the factor ring D(pi) of 

D(p). 

Step 1: Compute LIST= EGCD(q, aq/&x, p). 
Step 2: For each quadruple (pi, a1, bi, di) in LIST, keep only (pi, a1) . 

Lemma 38. Algorithm 37 works as claimed. 

Proof. This is an immediate consequence of the properties of EGCD, the Chi- 
nese remainder theorem, and the square free factorization algorithm over 
fields. o 

We remark that this algorithm can certainly be modified to work over fields 
of characteristic 1 $ 0 by separately handling cases where q is divisible by lth 
powers. In the interests of space and simplicity, we do not consider this case. 

Our blowing up algorithm will depend on one more operation on coefficient 
rings D(p). Suppose f(W) E D(p)[W] is a square free polynomial (perhaps 
computed by the square free factorization algorithm). Then we can find a prim- 
itive element for the ring D(p)[W]/f-that is, we can find a polynomial q(T) 
and an isomorphism 

D(p)[W]/f -- D(q). 

Again, our method is a generalization of the standard method for finding prim- 
itive elements in field extensions. 

Algorithm 39. Primitive elements. 
Input: A square free polynomial p(T) over k, and a square free polynomial 

f(T, W) over D(p). 
Output: A list of triples of polynomials {qi(T), u1i(T), vi(T)} such that the 
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map 

k[T, W]/(p(T), f(T, W)) Jk[T]/qi(T), 
T (u i(T)) , 

W (Vi(T)) 

is an isomorphism. 
Step 0: c:= O. RESULT:={}. 
Step 1: Let g(T, Z):= f(T, Z -cT) in D(p)[W]. 
Compute the resultant r(Z) of g(T, Z) with p(T), eliminating T. 
If r(Z) is not square free over k, increment c and repeat Step 1. 
Step 2: Let LIST := EGCD(r, p, g). Note that, in this invocation of 

EGCD, Z plays the role of T and T plays the role of x. 
For each quadruple (pi, ai, bi, di) in LIST, do: 

Write di(Z, T) = a(Z)T - b(Z). 
Set u(T) := b(T)/a(T) mod pi(T) . 
Set RESULT:= {pi(T), u(T), Z - cu(T)} U RESULT. 

Step 3: Return RESULT. 

Lemma 40. Algorithm 39 terminates, returning a list (qi, ui, vi) with the 
claimed properties. 
Proof. First, Step 1 terminates. To see this, interpret the resultant r(Z) com- 
puted in each pass through Step 1 as the projection of the points in the (T, W) 
plane determined by the equations p(T) = 0 and f(T, W) = 0 onto the Z- 
line, where Z = W + c T. Since the ground field k is infinite and the equations 
p(T) = 0 and f(T, W) = 0 determine a set of points with multiplicity one, 
there must be a line such that the projection consists of distinct points. There- 
fore, we eventually reach a c such that the polynomial r(Z) is square free. It 
follows that the map 

k[T, Z]/(p, r, g) -k[T, W]/(p, f), 
T T, 
Z W-cT 

is an isomorphism. However, since the dimension of k[Z]/r(Z) is equal to 
that of k[T, W]/(p, f), the ideal (p, g) in k[Z, T]/r(Z) must be of the 
form (aT - b) where a is a unit. Therefore, we have an isomorphism 

k[Z, T]/(r, p, g) k[Z]/r, 

T b(Z)/a(Z) - 

Recalling that we constructed r by setting Z = W + cT, we see that W = 

Z -cb(Z)/a(Z) under this isomorphism. In Step 2, the call to EGCD computes 
the generator aT - b for the ideal (p, g), possibly splitting up the ring r in 
the process. Then, for each factor, we compute the b(Z)/a(Z) and W = 
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Z - cb(Z)/a(Z). Thus, the list RESULT that we eventually return has the 
desired properties. o 

We conclude this subsection with a discussion of the complexity of the prim- 
itive element algorithm. 

Lemma 41. Let p(T) and f(T, W) be polynomials such that p(T) is square 
free over k and f(T, W) is square free over D(p). Let 

n = dim k[T, W]/(p, f). 

Then the primitive element algorithm requires O(n4) field operations. 
Proof. Let n1 be the degree of p(T) as a polynomial in T, and n2 be the 
degree of f as a polynomial in W. Then n = n1 n2. Each substitution of 
Z - cT for W in Step 1 requires 0(n 2) operations in the ring D(p), for a 

2 2~~~~~~~~~~ total of O(n 2) field operations. Each resultant can also be calculated in O(n2 

operations. The square free check requires O(n 2) operations since it amounts to 
computing the gcd of r with r' over k. In addition, this loop need be executed 
at most O(n 2) times. To see this, recall that g(T, Z) will not be square free 
if the line W - cT = 0 intersects two or more of the points satisfying p (T) = 0 
and f(T, W) = 0. Since there are n points, there are less than n2 lines 
meeting two or more of them. Thus, Step 1 requires O(n4) operations. 

In Step 2, the EGCD operation requires 

0(deg(r)2 deg(p) deg(g)) 

operations, and this is simply O(n3) . The various arithmetic operations in the 
quotient rings D(p,) produced by EGCD are all 0(deg(p,)2), and since the 
sum of these degrees is n, the total time for them is O(n2) . It follows that the 
grand total number of operations for this algorithm is O(n4) . 0 

We point out that this result is very much a worst case. If, in Step 1, a random 
c is picked and used to change coordinates, the chances are excellent that the 
loop in Step 1 will only need to be executed once. Therefore, this algorithm is 
"generically" an O(n 3) algorithm. 

3.2. The blowing up algorithm. For a detailed description of the process of 
blowing up, we refer the reader to the algebraic geometry literature, and in 
particular to [4, Chapter 8]. However, we will walk through the process a step 
at a time, describing it algorithmically as we go. 

We begin with a polynomial F E (x, y)D(p)[[x, y]] = (x, y)A(p). Assume 
that the multiplicity of F at each maximal ideal of A (p) is m. Let F, E 
A(p)[y/x] and F2 E A(p)[x/y] be defined as follows: 

(4) F1 (x, y/x) = ?mF(x, x(y/x)), 

F2(x/yy) = y m F(y(x/y), y). 
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Let B1 and B2 be the rings 

B1 = A(p)[y/x]/F1, B2 = A(p)[x/y]/F2. 

Then the blowing up X of X = SpecA(p)/F at the ideal (x, y) is the 
scheme constructed by gluing SpecB1 to SpecB2, identifying SpecB1[x/y] 
with Spec B2[y/x] by means of the obvious isomorphism between these rings. 

It is easy to see that SpecB1 covers all of X except possibly for the point 
on SpecB2 where x/y = 0. The function x/y is not a unit in B2 precisely 
when F2 E (y, x/y) . If this is the case, a standard theorem [19, p. 175] shows 
that the localization Bo. of B2 at the ideal (x/y, y) is a direct factor of B2 , 
and is isomorphic in the obvious way to A(p)[[y, x/y]]/F2. Of course, if x/y 
is a unit in B2, then Boo is the zero ring. If we write B2 = B x Boo, the 
maximal ideals of Bo. are the "points at infinity" on the exceptional divisor, 
and the maximal ideals of B' are covered by Spec B1. We conclude from this 
discussion and the definition that the blowup of A(p)/F is the ring B1 x Boo. 

Notice that Bo. is in the form A(q)/G for a polynomial q and power series 
G. Our computation of the blow up of X amounts to finding an isomorphism 
of B1 = B with a ring of the form H1 A(qj)/Gi . The following lemma explains 
how this is done. 

Lemma 42. Let B = A(p)[y/x]/F1(x, y/x). Let f(W) = F(O , W), and let 
(pi i) be the pairs returned by the square free factorization algorithm applied 
to p(T) and f(W) over k. Then there is an isomorphism a: 

B -* fJ(D(p1)[WJ]/1f)[[x, yi]]/Fl (x, y, + WJ), 

(5) xx, 

Y/x H-Y+ Wi. 
Proof. Every maximal ideal of B must contain x. Since 

B/xB = A(p)[y/x]/(x , F-) = D(p)[y/x]/f(y/x), 

we see that the radical of the ideal (x, f (y/x)) is the Jacobson radical of B. 
The square free factorization algorithm returns a list of polynomials (pi, /i) 
such that fi generates the radical of the ideal fD(pi) c D(p). Let Bi be the 
factor of B corresponding pi. Then (x, fi(y/x)) is the Jacobson radical of 
Bi. 

Since fi(y/x) is in the Jacobson radical of Bi, Bi contains an approximate 
solution to the equation f1(fJ'J) = 0. Since fi(y/x) is square free modx, we 
know that J/(y/x) is a unit in Bi. It follows by Hensel's lemma that there 
exists a Wi E Bi with Wi . y/x mod(x, fi(y/x)) and 17(Wi) = 0. It is easy 
to see that (x, y/x - Wj) = (x, fi(y/x)) . We conclude that there is a surjection 

D(pj)[Wi]/f[[x, y/x - Wj] -] Bi. 

It then follows easily that the kernel of this surjection is generated by 
the form F1 (x, (y/x - J'Jj) + Wf) . Since B = H B1, the lemma follows. o 
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The lemma shows us how to split A(p)[y/x]/F1 up into a product of rings 
of the form D(p)[W]/(fJ(W))[[x, y]]/G. As a final stage in finding a standard 
form for the blowup of A(p)/F, we convert the coefficient rings D(p1)[Wj]/Jf 
into the form D(hi). This is the problem of computing a primitive element, 
which we have discussed in Subsection 3.1. As we saw there, we may find 
polynomials qj, ui, and vi such that the map /B1 

k[T, W]/(pi(T), fi(T, W))[[x, y/w - W]] - + k[T']/qi[[x, y/x -vi]], 

(6) T ui(T'), 
W I, v1(T') 

is an isomorphism. If we let y = ai ? a, then we obtain an isomorphism 

A(p)[y/x]/F1 ilL 171 A(qi)[[x, yi]]/Gi, 

x (x)i, 

(7) y/x (7i + Vi' 
T ui , 

Gi(X' yd = Fi(x'yi + Vi) 

The maps yi, which we would like to compute, are determined by quintu- 
ples (var, Gi, qj, ui, vi) , where Gi q1j, ui, and vi define a map as in (7), and 
"var" is either x or y. We use this piece of information to identify the equa- 
tion of the exceptional divisor in the image ring determined by the other data. 
Thus, if var is x, then the remaining data describes a map exactly as in (7), 
but if var is y, then we interpret that data as giving a map from A(p)[x/y]/F2 
to A(qi)[[xi, y]] defined as in (7) but with the roles of x an y interchanged. 
This convention allows us to handle the points at infinity without special con- 
sideration. Indeed, the ring Bo. discussed above, which is the coordinate ring 
of the points at infinity, is determined by the data (y, F2, p(T), 0, T) . 

We represent the blowup of A(p)/F at (x, y) by supplying a list of quintu- 
ples {vi, Gi, qj, ui, vi} . The product of the rings A(qj)/Gi constructed from 
this data will be identified with the coordinate ring of the blowup of A(p)/F 
via the product of the isomorphisms constructed from the ui, vi as in (7). 

In terms of this data structure, the blowing up algorithm takes the following 
form. 

Algorithm 43. Blowing up. 
Input: A square free polynomial p(T) and a polynomial 

F(x, y) = E a11Xiyj 

with coefficients ai1 in D(p). We assume that F is square free and that 
the leading coefficient c(F) of F (relative to the lexicographic within degree 
ordering) is invertible in D(p). 
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Output: A list of quintuples representing the blowup of A(p)/F as described 
above. 

Step 1: m mult(x Y)(F). 

F1 := XmF(x, xy). 
f(W):=F1(0, W). 
Step 2: Apply the square free factorization algorithm to the pair f (W) and 

p(T) . Let LIST := {,(fi , pi)} be the result. 
Step 3: Set RESULT = { }. For each pair (fi (W, T), pi (T)) E LIST do: 
Compute a primitive element Z for the ring k[T, W]/(pi(T), fi(W, T)) . 
Let PRIMLIST be the resulting list (qij(Z), uij(Z), vij(Z)). 
For each element of PRIMLIST, do: 

Let Gij be the polynomial obtained from F1 by substituting: 

T vij(T), 

Y Y + uij(T), 

computing mod qij (T) . 
Set RESULT:= Uij {(x, Gij , qij i uij, vij)} U RESULT. 

Step 4: If ao m = 0 then: 
Let G := y mF(xy, y). 
Set RESULT:= { (y, G p, 0, T)} u RESULT. 

Step 5: Return RESULT. 

Theorem 44. The blowing up algorithm works as claimed. 

Proof. First of all, we point out that our assumption that the leading coefficient 
of F is a unit in D(p) guarantees that the multiplicity of F at all maximal 
ideals of A(p) is the same. Therefore, F1 is indeed the equation of the strict 
transform of F. The correctness of the remainder of Steps 2 and 3 follows 
from the discussion preceding the algorithm. Step 4 computes the coordinate 
ring of the points at infinity. o 

It is now a straightforward matter to determine the complexity of the blowing 
up operation. We write the complexity in a way that will be convenient when 
we consider the complexity of the resolution problem. 

Lemma 45. Let m be the multiplicity of F at the ideal (x, y), let r be the de- 
gree of the coefficient polynomial p ( T), and let d be the degree of the polynomial 
F representing the singularity. Then Algorithm 43 requires O(m4 r4+ r 2m 2d4 
field operations. 

2 Proof. Step 1 requires time proportional to d . Step 2, a square free factor- 
ization, requires r2 m2 operations. The primitive element calculations require 
O(Zr4m4), where r1 is the degree of the pi returned by the square free al- 
gorithm. Since E r = r, this sum is O(r4m4). Let r11 be the degree of qij . 
Then the coordinate changes in Step 3 require E r 2d4 Ffield operations. But 
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r2 < r2m2 since Er < rm. Therefore, the coordinate changes require 
O(r 2m2 d4) operations. Combining these totals yields the desired result. E 

3.3. Resolution of singularities. We have finally assembled all of the necessary 
apparatus for the resolution of curve singularities. We will combine the blowing 
up procedure with the deformation computation to accomplish the resolution. 

Algorithm 46. Resolution. 
Input: A square free polynomial p and a square free power series F in 

D(P) represented by a function as discussed in ?2. 
Output: A list of lists representing the resolution of the singularity of F at 

the origin, in a manner discussed more fully below. 
Step 1: Apply the standard basis algorithm to F and p. From the resulting 

tree of standard bases, we obtain a factorization p = H pi (T) such that F has 
constant multiplicity (and constant Milnor number) on each factor A(pi)[[x, y]] 
of A(p). We also obtain from this computation the invariants 6i (F), that is, 
the smallest power of (x, y) such that (x, y)<' c (Ft , ?y) in A(pi). For each 
i, let Gi be the polynomial obtained by dropping all terms of Fi of total degree 
greater than or equal to 26i + 1 . 

Step 2: Let RESOLUTION= { }. 
For each i, do the following: RESi = { }. 
If mult(Gi) > 1, then 

Compute the blowup of Gi using Algorithm 43. Let NEWPTS be the 
resulting list. 
For each quintuple (wij, Gij, qij, uij, vij) in NEWPTS, do: 

Call this algorithm recursively on Gij and qij. Let RESij be the 
resulting list. 
Set 

RES: {(wij, Gij, qij uij, )Vij RESij}} U RESi. 

RESOLUTION = RESOLUTION U {pi, RES, }. 

Step 3: Return RESOLUTION. 

Lemma 47. The resolution algorithm terminates. 
Proof. The algorithm replaces p and F by polynomials pi and Gi. The pi 
and Gi are such that A(p) is isomorphic to Hj A (pi) and, by Tougeron's lemma 
(Lemma 4 and Lemma 5), there is an analytic change of coordinates in A(pi) 
for each i carrying the image Fi of F in A (pi) to the polynomial Gi. It 
suffices then to prove that the algorithm terminates for each pi and Gi. If 
m = 1 , this is clear. If m > 1 , then the blowing up step replaces pi and Gi by 
a set pi; and Gij such that the conductors of the rings A (pij) /Gij have smaller 
index. It follows by induction on this index that the algorithm terminates. o 

The list RESOLUTION produced by the algorithm consists of entries of the 
form {pi, LIST} , where p1 is a factor of p. The list LIST is null if the points 
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in A(p) defined by the zeros of pi all have multiplicity 1. Otherwise, the 
list LIST consists of pairs of the form {(w, G, q, u, v), RESLIST} , where 
(w, G, q, u, v) is a quintuple defining a factor of the blowing up of A(pl)/Gi 
according to (7). RESLIST, which is of the same form as RESOLUTION, 
describes the resolution of the infinitely near points described by the quintuple. 

To construct the blowing up of F at (x, y) from the list resolution, 
we proceed as follows. Let {pl, LIST} be an element of RESOLUTION. 
If LIST is empty, then F is nonsingular at the zeros of pl. Otherwise, 
let {(w, G, q, u, v), RESLIST) be an element of LIST. Then, by recursion, 
RESLIST describes the resolution of the ring A(q)/G. Define a map 

p: A(pi)/F -- A(q)/G 

so that p is the composition of the analytic isomorphism constructed by Tou- 
geron's lemma and the map determined by the quintuple (w, G, q, u, v) . The 
product of the p defined in this way, for all elements of LIST, combined 
with the data constructed recursively from RESLIST, gives the resolution of 

A(pi)/F. The product of these resolutions over all elements in RESOLUTION 
gives the complete resolution of A(p)/F. 

Since we are using the conductor to measure complexity, we need the follow- 
ing result from the general theory. 

Theorem 48 (see [4, p. 764]). Let F E A(p) be a square free power series such 
that the multiplicity of F at all maximal ideals of A(p) is m . Let {PI, .. ., Pn} 
be the set of infinitely near points to the origin, and let ci be the conductor of the 
strict transform of F at Pi. Then 

CF 
= E ci + deg(p)m(m - 1). 

Theorem 49. Let p be a square free polynomial over k, F a square free 
power series in (k[T]/p)[[x, y]], and let c be the index of the conductor of 
F. Then the resolution algorithm computes the resolution of F using at most 
O(deg(p) (1 + C6)) field operations. 
Proof. We proceed by induction on the number c. If F is nonsingular at all 
points of Spec A(p), then, since 6F = c = 0, the Milnor number algorithm will 

establish this in O(deg(p)2) operations. Otherwise, the algorithm will require 
(deg(p )254 + deg(p)2) operations to split F up into a set of pairs (p1, G1) . 

Since 6F < C, we may estimate this by O(deg(p)2(c4 + 1)). The algorithm then 
considers those of the (pi, G1) where Gi has multiplicity greater than one. 
Here the algorithm requires 

E O(m4 deg(p )4 + m2 deg(p )254) 

operations, where m1 is the multiplicity of Gi and 5i is 5G. Since mi > 1, 

we may estimate deg(pi)m 2 < O(c), and therefore this sum is bounded by 
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E O(deg(pi) ci + cS deg(pi)) . Since each ci < c and E deg(pi) < deg(p), we 
may bound the first steps of the algorithm by 

O(deg(p )2(1 + c2 + c4 + C5)) < O(deg(p) (1 + c)5) 

field operations. By the inductive hypothesis, the recursive computation applied 
to the pi; and Gi1 requires at most Ei jO(deg(pij)2(1 + cij)6) operations. 

Since deg(pij) < deg(p), this is bounded by deg(p)2 E(1 + Cij)6 . However, 
since all of the points represented by the pairs (pi;, G1j) were obtained by 
blowing up (pi, Gi), by Theorem 48 we must have Ej 1 +cij < ci, from which 

we conclude that our time is bounded by O(deg(p)2(Ei ci)6), which in turn is 
at most O(deg(p )2c6). Therefore, the total time required is 

O(deg(p) c ) + O(deg(p) (1 + c )) 

operations. For a suitable choice of constants, this is bounded by 

O(deg(p)2 (1 + c6 )) 

as claimed. o 

We make no pretense to claiming that this bound is sharp. The primary 
significance of the result is the conclusion that the complexity of resolution 
can be measured by local data-namely the index of the conductor and the 
number of connected components of the singularity-and that the complexity 
is polynomial. The important problem of understanding the exact complexity 
of the resolution of singularities is completely open. 

3.4. Computing the conductor. Our final results show how the conductor of a 
singularity can be extracted from the resolution data generated by the resolution 
algorithm. We apply the classical method of adjoints, described in the following 
theorem, to compute the conductor ideal. 

Definition 13. Let p be a square free polynomial over k and let F be a square 
free power series in A(p). Then an element f of A(p) is an adjoint for F 
if, at each infinitely near point to F of multiplicity m, f vanishes to order 
m - I. 

Theorem 50 (see [4, p. 797ff]). The conductor ideal of A(p)/F is the ideal in 
A(p) /F generated by the adjoints. 

We also make use of the following result. 

Lemma 51 (see [4, p. 797ff]). Let p and F be as above. Then OF/Ox and 
OF/Oy belong to the conductor of F. 

Since the ideal IF = (FX, jjT) has finite index in A(p), we can describe the 
conductor by computing the kernel of the linear map 

(8) A(p)/(Fx, Fy) -- A(p)/c. 
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expressed in terms of the basis of A(p)/(F, F?) given by the monomials. The 
following procedure shows how to extract this information from the list RES- 
OLUTION which is generated by the resolution algorithm. 

Algorithm 52. Conductor. 
Input: A square free polynomial p, a square free power series F, and the 

output RESOLUTION from the resolution algorithm. 
Output: A system of linear equations describing a linear subspace of A(p)/IF; 

this subspace is the kernel of the map in (8). 
Step 0: For each {q, LIST} in RESOLUTION, do: 
Construct a "generic" polynomial 

deg(q)- 1 

E= E Z aiik T xy 
i, jeQ k=O 

so that aiJk are unknowns and Q is the set of i, j such that xy' is not 
in IF C A(q). (Q is just the set of monomials which are not divisible by 
the leading terms of elements of the standard basis for IF .) 
Call the conductor-reduction algorithm below on E and {q, LIST}. 
Return the resulting list of linear equations in the aijk. 

Here is the conductor-reduction algorithm we refer to: 

Algorithm 53. Conductor-reduction. 
Input: A polynomial E in x, y, and T, with coefficients that are linear 

functions in aijk; and an element {p, LIST} from the resolution list RESO- 
LUTION for a power series F. 

Output: A list of linear equations in the aijk. 
Step 0: Set EQLIST:= f }. 
Step 1: Let m be the multiplicity of the point represented by {q, LIST). 

If m < 1 (in which case LIST is null) then return. Otherwise, for each term 
e(ijk)Tkxiyi occurring in E with i+ j < m - 1 , add the equation e(ijk) = 0 
to the list EQLIST and delete this term from E. 

Step 2: For each element {(w, G, q, u, v), RES} in LIST, make the change 
of coordinates represented by the quintuple in E. (See (7).) 

Set E := W1lmE (this is an exact division). 
For each {p, LIST} reduce E modp and call this routine recursively on 

E modp and {p, LIST}. Append the resulting list to EQLIST. 
Step 3: Return EQLIST. 

Lemma 54. The list of linear equations returned by the conductor algorithm de- 
fines the conductor of F, in the sense that if E is a polynomial >j aij k1TkxiyJ 
with a Ek E k, then the aIk satisfy the equations in EQLIST if and only if 
E belongs to the conductor of F. Furthermore, the equations in EQLIST are 
independent. 
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Proof. First of all, the algorithm actually computes the conductor of the ring 
A(p)/G, where G is the polynomial obtained by dropping terms in F of de- 
gree larger than 25F + 1. However, by Lemma 5, the analytic isomorphism 
z between A(p)/G and A(p)/F induces the identity on A(p)/IG = A(p)/IF. 
Therefore, we may replace F by G without loss of information. 

Now we proceed by induction on the conductor of F. If F has multiplicity 
1, then the algorithm will return an empty list, which is correct. Otherwise, the 
algorithm will add the set of linear equations in the coefficients of E to EQLIST 
which are equivalent to the condition " E vanishes to order at least m - 1 at 
(x, y) ." It then makes the necessary changes of coordinates to find the equation 
of E near each infinitely near point. By induction, we may conclude that the 
recursive call will adjoin to EQLIST the conditions which force the blowup E 
of E to belong to the conductors of all the infinitely near points (notice that 
here, too, we are applying Tougeron's lemma). It follows by the theorem on 
adjoints that this combined list defines the conductor. The independence of 
the equations in EQLIST follows from Noether's theorem that the vanishing 
conditions which define the conductor are independent. o 

Lemma 55. The computation of the conductor requires O(deg(p)2c6 ) field oper- 
ations. 

Proof. The algorithm adjoins some conditions to the list, then makes a change of 
coordinates of a polynomial of degree O(6F)I in two variables, with coefficients 
that are polynomials in T of degree at most deg(p). These polynomials in 
turn have coefficients that are unknowns. The total time for these changes 
of coordinates is therefore O(6 4 deg(p)2c), where we have used the fact that 
the number of unknown coefficients is bounded by the Milnor number of F, 
which, by Lemma 3, is in turn bounded by a multiple of the conductor. Using 
the estimate 5F < c from Lemma 3, we find that the changes of coordinates 

require O(c deg(p)2) . It then follows by a reasoning similar to that used to 
derive the complexity of the resolution algorithm that the total time for the 
algorithm, including the recursion, is O(deg(p) c6) as desired. o 
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